Progress on Tiger Team Project: Air Quality Reanalysis

Yongtao Hu, M. Talat Odman, Armistead G. Russell

School of Civil & Environmental Engineering, Georgia Institute of Technology

With thanks to project leaders Greg Carmichael and Pius Lee and other members

GT-Emory AQAST Meeting, August 28th, 2015

Part 1: Project Team and Major Goals

AKL Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

Air Quality Reanalysis (Configuration for 2010 HTAP production)

Greg Carmichael¹, Pius Lee², Brad Pierce³, Dick McNider⁴, Ted Russell⁵, Edward Hyer⁶, Yang Liu⁷, Arastoo Pour Biazar⁴, Yongtao Hu⁵, Talat Odman⁵, Scott Spak¹, David Edwards⁸, Ken Pickering⁹, Youhua Tang², Li Pan², Hyuncheol Kim², Daniel Tong²

¹ College of Engineering, University of Iowa, Iowa City, IA
 ²Air Resources Lab., NOAA Center for Weather and Climate Prediction, College Park, MD
 ³National Environmental Satellite and Information Service (NESDIS), Madison, WI
 ⁴Department of Atmospheric Science, University Alabama, Huntsville AL
 ⁵School of Civil and Environmental Engr., Georgia Institute of Technology, Atlanta, GA
 ⁶Naval Research Laboratory, Monterey, CA
 ⁷Department of Environmental Health, Emory University, Atlanta, GA
 ⁸ Corporation for Atmospheric Research, Boulder, CO
 ⁹Atmospheric Chemistry and Dynamics Lab., NASA, Greenbelt MD

AQAST-9 June 2-4, 2015, St Louis, MO

Concept of Reanalysis

A 'reanalysis' is a climate or weather model simulation of the past that includes data assimilation of historical observations. The observations can be very comprehensive (satellite, in situ, multiple variables) or relatively sparse (say, sea level pressure only), and the models themselves are quite varied. Generally these models are drawn from the weather forecasting community (at least for the atmospheric components) which explains the odd terminology. An 'analysis' from a weather forecasting model is the 6 hour (say) forecast from the time of observations. Weather forecasting groups realized a decade or so ago that the time series of their weather forecasts (the analyses) could not be used to track long term changes because their models had been updated many times over the decades. Thus the idea arose to 're-analyze' the historical observations with a single consistent model. These sets of 6 hour forecasts using the data available at each point are then more consistent in time (and presumably more accurate) that the original analyses were. - See more at: http://www.realclimate.org/index.php/archives/2011/07/reanalyses-rus/#sthash.WKOIKeHI.dpuf

Applications of Reanalysis

Environments

- Climate Change
- Outdoor Air NEW
- Water
- More

Health Effects

- Asthma
- Cancer
- Childhood Lead Poisoning
- More Health Conditions

Population Health

- Population Characteristics
- Health Impact Assessments
 NEW
- Children's Environmental Health
- More

Info by Location

Select	•
GO	

Reanalysis would be able to provide PM2.5 speciation data with national coverage at county level

Courtesy: Dan Costa "New Directions in Air Quality Research at the US EPA"

Public Health Burden of PM_{2.5}

(Fann et al., 2011)

ARL

Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

NOAA Service: A user friendly downloadable archive

➤ NOMADS

NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS)

NOAA National Operational Model Archive & Distribution System

4ADS Home > Data Acce

NOMADS Data Access

NOMADS Data Access by Provider and Data Type

Quick Access Links							
NWP	Ensembles	Reanalysis	Climate	Programmatic	Servers		
NAM	Lo-Res	<u>CFS</u>	<u>CM2.X</u>	<u>SRRS</u>	LAS		
<u>GFS</u>	<u>Hi-Res</u>	NARR	<u>CFS</u>	<u>NDFD</u>	<u>GDS</u>		
<u>RUC</u>	<u>Probability Tool</u>	Global R1/R2	<u>SST</u>	<u>RTMA</u>	TDS		

Part 2: Tasks to make the model more robust

AQAST 7, Harvard University, June 17-19, 2014

/RF_ARW-MCIP-CMAQ model physics and chemistry options

WRF-ARW	Both North America (12 km) & CONUS (4 km)					
Map projection & grid	d Lambert Conformal & Arakawa C staggering	The states				
Vert. co-ordinate	42 σ-p unevenly spaced levels					
advection	RK3 (Skamarock and Weisman (2008))	d02				
SW & LW radiation	RRTMG (lacono et al. 2008))					
PBL Physics	Mellor-Yamada-Janjic (MYJ) level 2.5 closure					
Surface layer scheme	Monin-Obukhov Similarity with viscous sub-layer					
Land Surface Model	NCEP NOAH					
Cloud Microphysics	Thompson et al. (2008)	100°W 90°W 80°W				
Cloud convective mixin	ing Betts-Miller-Janjic Mass adjustment AQ forecast: ^1	2 km nested to 4 kn				
CMAQ4.7.1	Both CONUS(12 km) & SENEX (4 km)	■—sigma —— Alt_m				
Map projection & grid	Lambert Conformal & Arakawa C staggering	25000				
Vert. co-ordinate	42 σ-p unevenly spaced levels 0.8	20000				
Gas chemistry	Cb05 with 156 reactions	15000				
Aerosol chemistry	Aero5 with updated evaporation enthalpy 0.5					
Anthropogenic emission	2005NEI as base year, mobile projected using AQS*, area and off-road used CSPR^, point source uses 2012 CEM data0.40.3	10000				
	WRAP oil and gas emissions data	5000				
Biogenic emission	BEIS-3.14	······································				
Lateral BC	RAQM (B. Pierce) 1 5 9 13	3 17 21 25 29 33 37 41				

AQAST 7, Harvard University, June 17-19, 2014

Longitudinal cross-section along Denver (105W) at 20 UTC July 2, 2011 No spurious spikes of vertical gradients over complex terrain for O_3 concentration

NMMB-CMAQ4.7.1 (22L)

daily mean PM25 20110703 LT / 22L

24 h averaged surface PM_{2.5} on July 3 2011

A mixed result as a general lower predicted value by 42L exacerbated under-bias, but the higher predicted values by 42L in Lower Middle helped.

Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

Outline on progress

The Regional Chemical Analysis TT started in 2013:

- Deliverable in 2014: Analysis fields for July 2011 provided for GaTech and UMD for SIP modeling
 - Assimilated exo-domain wild fire, O₃ using RAQM
 - Upgrade emission based on NEI2011
 - Assimilated wild-fire using NESDIS obs, PM_{2.5}
 constraints using MODIS AOD & AQS PM_{2.5}
 - Assimilated cloud attenuated photolytic rate
 - Mimicked SIP reduced RMSE by 400% for PM_{2.5}
- Deliverable in 2015: Analysis fields for 2010, support HTAP

 Assimilate lightning NOx, PAR, DYNAMO Isoprene
 User friendly portal and archive for chemical analysis fields over Continental U.S.

Lightning Process currently used in CMAQ 5.0*

*CMAQ Version 5.0 and higher contains a scheme based on Allen et al. (2012, ACP) that was funded under NASA Applied Sciences Air Quality Program project (Ken Pickering, PI):

- Method for estimating lightning flash rates
- LNO_x production per flash
- Method of allocating LNO_x production in the vertical

July 1-10, 2011 NO₂ (Left) Base (Right) with LNOx, (Bottom) Difference

O₃ BASE 20110701 - 20110710

O_3 10 days avg		Stations	Obs mean	Mean bias	RMSE	Corr. Coef.
Base		3222	36.45	-0.17	15.81	0.66
	\ .		36.45	2.90	24.54	0.53
O ₃ 10 days avg	(RM)	Stations	Obs mean	Mean bias	RMSE	Corr. Coef.
Base		483	42.36	1.32	13.32	0.61
Include LNOx			42.36	6.61	29.60	0.48

AQAST-9 June 2-4, 2015, St Louis, MO

July 1-10, 2011 PM_{2.5} (Left) Base (Right) with LNOx, (Bottom) Verification

M_{2.5} BASE 20110701 - 20110710

LM

PM _{2.5} 10 days avg		Stations	Obs mean	Mean bias	RMSE	Corr. Coef.
Base		1801	12.67	-3.47	13.22	0.25
			12.67	-3.07	13.58	0.24
PM _{2.5} 10 days avg (UM)	Stations	Obs mean	Mean bias	RMSE	Corr. Coef.
Base		276	17.71	-3.66	16.40	0.23
Include LNOx			17.71	-2.61	17.08	0.22

Part 3: Data Assimilation Methodology

Optimal Interpolation (OI)

• OI simplifies the extended Kalman filter formulation (Dee et al. *Q. J. R. Meteor. Soc.* 1998) by limiting the analysis problem to a subset of obs.

 $X^{a} = X^{b} + BH^{T} (HBH^{T} + O)^{-1} (Y - HX)$

 Obs far away (beyond background error correlation length scale) have no effect in the analysis.

Injection of Obs through OI takes place at 1800 UTC daily.

Alternative methods: Emissions adjustments and model results based data fusion

MODIS L2 C6 AOD Re-gridded Near Real-Time HiRes2 Products: 12-km versus 4-km

0.4

0.4

0.3

0.2

0.2

0.1

0.1

Part 4: Reanalysis fields for SIP modeling and health studies

DISCOVER-AQ

GA_Tech	PM2.5 24h avg	Obs mean	Mean bias	RMSE	Corr. Coef.
4 KM	Base	17.36	-5.88	22.50	0.40
	With re-analysis field to derive LBC	17.36	-3.48	22.19	0.42

Summary

- Decision on matching the GFS vertical structure 42-L was made for the chemical reanalysis forward model
 - The reanalysis forward model showed reasonable ozone cross-section in complex terrain
- The reanalysis forward model is tested and used to generate July 2011 reanalysis fields for MDE for SIP modeling
- July 2011 analysis fields was used by Georgia Tech for a 14-day SIP simulation and showed significant improvement in RMSE
- Data Set assimilated: RAQMS (MLS, OMI O₃, MODIS AOD); HMS Fire; GOES cloud fraction for photolytic rate correction; MODIS AOD; AQS O₃, PM_{2.5}
- Assimilate lightning NOx: Use NOAA hourly reporting of the National Lightning Detection Network to derive and distribute LNOx
- \succ Preliminary surface NOx and O₃ verification showed over-estimation
- > Further improvement of LNOx assimilation algorithm is being test
- Analysis configuration also includes observation set on biogenic emission from the DYNAMO team
- Production FY2010 in conjunction with HTAP support
- Portal via RSIG is being tested

Supplement

AQAST Project: Air Quality Reanalysis

Translating Research to Services

3:30-5:00 Session Yang Liu: MODIS C6 Alvarado & Hegarty: NH₃ Huang, McNide, Lee : T_{Skin}

+ AQ Assessments

+ State Implementation Plan Modeling

+ Rapid deployment of ondemand rapidresponse forecasting; e.g., new fuel type,..., etc.

+ Health Impacts assessments

ined

+ Demonstration of the impact of observations on AQ distributions

+ Ingestion of new AQAST products into operations

http://acmg.seas.harvard.edu/aqast/projects.html

Re-configuration of vertical structure: Decision to match GFS (NCEP)

CO (ppb) along the P3 Flight – July 2 2011: AOD_DA case vs. Obs

8h daily max 03 20110703 LT / 22L

Daily maximum 8 h averaged surface O₃ on July 3 2011 The over bias across a large swath in the Southern U.S. was reduced by 42L

National correlation map between AIRNow measurement and MODIS AOD

-1.0

Typically good correlation between surface PM_{2.5} and AOD retrieved by MODIS

MODIS (Moderate Resolution Imaging Spectroradiometer) AOD

Orbit:705 km, 10:30 a.m. descending
node (Terra) or 1:30 p.m.
ascending node (Aqua)Swath2330 km (cross track) by 10 kmDimensions:(along track at nadir)Spatial250 m (bands 1-2)Resolution:500 m (bands 3-7)
1000 m (bands 8-36)

http://terra.nasa.gov/About/

-0.5

0.0 Correlation

Courtesy :NESDIS

0.5