# Evaluating Satellite Based Fire Detection in GA





ROLLINS SCHOOL OF PUBLIC HEALTH

**EMORY** 

Yang Liu, PhD

8/27/2015 Emory-Georgia Tech AQAST Workshop



### **Project Investigators**

- Emory: Yang Liu, Xuefei Hu, Chao Yu, and Lance Waller
- GA EPD: Di Tian
- NOAA: Mark Ruminski

Collaborator: Dr. Kevin Robertson, Tall Timbers Research Station, Tallahassee, FL

#### Introduction



- Biomass burning is an important source of fine particles in southeastern US – 250K tons/yr primary emissions.
- Prescribed burns and wildfires in the SE are often very small and burn below the canopy. They are severely under-reported by MODIS and GOES based fire emission inventories.
- GA EPD is interested in improving their CMAQ fire emission inventory for regional simulations.

## **Fires in Georgia**

- Wildfires
  - Often large, uncommon and vary greatly from year to year
  - High intensity
  - 9K fires burnt ~500K acres in 2007 (Harper et al. 2009)
- Prescribed fires
  - Small, very frequent and vary gradually from year to year
  - Low intensity
  - > 1 Million acres annually (Lee et al. 2005)







### **Research Objectives**



- Evaluate the performance of NOAA's Hazard Mapping System (HMS) active fire products with ground measurements.
- Note: The detection rate of HMS was evaluated as a whole instead of individual satellite instruments in it

#### **Data and Methods**



- Study year: 2011
- HMS Active Fire Detections
  - From 2x GOES satellites, 2x MODIS, and 7xAVHRR
  - Nominal spatial resolution: 1x1 to 4x4 km<sup>2</sup>
- GA EPD fire emissions inventory
  - Observed wild fires
  - Permit data for prescribed burns
  - Include location (5 levels of accuracy), area, date
  - Location types of "city" and "county" excluded

# **Summary of Ground Data**



![](_page_6_Picture_2.jpeg)

- 1. Most wild fires have detailed location information.
- 2. Most prescribed burns occurred in spring and winter while wildfires are more evenly distributed in time.
- 3. On average, 22% of the prescribed burns don't have accurate location information.

![](_page_7_Figure_0.jpeg)

Detection Rate =  $\frac{the Number of Fire Observations Detected by HMS}{the Number of Total Fire Observations} \times 100\%$ 

# **Results: HMS Detection Rate by Fire Size**

![](_page_8_Picture_1.jpeg)

ROLLINS SCHOOL OF PUBLIC

HEALTH

EMORY

80% of GA fires are smaller than 0.2 km<sup>2</sup> in size.

### **Results: HMS Detection Rates**

![](_page_9_Figure_1.jpeg)

Detection rate is higher in spring and winter when more larger fires occurred.

NASA AIR QUALITY APPLIED SCIENCES TEAM

ROLLINS SCHOOL OF PUBLIC HEALTH

EMORY

Higher detection rates (>10%) are obtained in forest, cultivated land, shrub land, and wetlands, which are land covers prone to large fires.

# Results: HMS Detection Rate on CMAQ Grid

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

Grid cells with high detection rates are where large fires occurred, not where more frequent burns occurred.

### **Discussion**

![](_page_11_Picture_1.jpeg)

- Ground data were treated as gold standard, but there is uncertainty with zip code level location information.
- We did not evaluate the rate of false detections because of the uncertainties in fire location, shape, and data exclusion in the ground data

#### **Summary**

![](_page_12_Picture_1.jpeg)

- HMS fire detection rate in GA is ~12%
- Fire size has the strongest influence on HMS fire detection rate
- HMS is good at locating the fires that it can detect – should be useful for GA and other states to improve the location information of their fires in the emissions inventory

![](_page_13_Picture_0.jpeg)

## **Going Forward**

- Evaluating HMS location errors with high-res ground fire data from Tall Timbers and 3 GA military bases
- Evaluating VIIRS 375 750 m resolution fire products