Evaluation of 2006 Air Quality Forecasting in Georgia

> Talat Odman , Yongtao Hu, Ted Russell School of Civil & Environmental Engineering

Michael Chang, Carlos Cardelino School of Earth and Atmospheric Sciences

> Georgia Institute of Technology Atlanta, Georgia

5th Annual CMAS Conference October 17, 2006

Air Quality Forecasting

- There is an increasing interest in day-to-day variation of air quality
 - Public becoming more health conscious
 - Local authorities looking for short-term management strategies
- Forecasts are produced using various techniques
 - Persistence
 - Climatology
 - Statistical Regression
 - Close Neighbor
 - Decision Tree
 - 3-D Air Quality Models

Air Quality Forecasting in Atlanta

- Ozone forecasting since 1996 Olympic Games
- Panel of experts get together and issue a forecast for next day
 - Ozone Alerts
- One of the methods used is 3-D AQM
 - Urban Airshed Model (UAM)
 - Diagnostic Meteorology
 - Constant Emissions
 - Arguably first in the U.S. but now mostly outdated
- Last year, PM_{2.5} forecasting started
- Forecasts being extended to other cities in Georgia
 - Macon (~150 km South of Atlanta)
- Our operation started May 1st, 2006

Some Other 3-D Forecasting Efforts in the U.S.

- NOAA/EPA
 - Eta-CMAQ modeling system
 - 12-km resolution over Southeastern U.S.
- BAMS
 - MM5-MAQSIP-RT modeling system
- NCAR/NOAA
 - WRF-Chem modeling system
- UH/Texas A&M
 - MM5-CMAQ modeling system

Goal of our Operation

- To provide accurate, "fine-scale", <u>local</u> forecasts sufficiently in advance for planning purposes
- NOAA/EPA's target is to issue nationwide 2-day forecasts with 2.5-km resolution in 10 years.
 - Davidson, P. M. et al., "National Air Quality Forecasting Capability," February 14, 2005.
- We want to get there (and go beyond) <u>locally</u> much faster.
 - Longer periods
 - Finer resolution (~1 km)
 - Viability of control strategies to avoid bad episodes

Our Modeling System

- WRF for meteorology
 - Driven by NAM (formerly Eta)
 - 3¹/₂ -day NAM forecasts available every 6 hours (00, 06, 12, 18Z)
- SMOKE for emissions
- CMAQ for chemistry and transport
 - Currently using standard version 4.5
 - Will activate our special additions soon
 - Variable Time Step (Banff)
 - Direct Decoupled Method (DDM) (Istanbul)
 - Adaptive Grid (Boulder & Louvain-la-Neuve)

Modeling Domain and Grids

- Three grids:
 - 36-km (72x72)
 - 12-km (72x72)
 - 4-km (99x78)
- Horizontal domains are slightly larger for WRF
- 34 vertical layers used in WRF
- 13 layers in CMAQ

Georgia Institute of Technology

Operation 2006

- Must issue tomorrow's forecast by 10 a.m. today
 - Operation starts 2 ½ days in advance (Wednesday's by Sunday night)
- We simulate:
 - 3 days over the 36-km grid using 00Z NAM, IC from previous cycle (warm start) and "clean" BC
 - 2 ½ days over the 12-km grid using 12Z NAM and IC/BC from 36-km
 - 24 hours over the 4-km using 12Z NAM and IC/BC from 12-km
 - Add 4 hours to all durations for time difference
- Mostly automated
 - 1 person
 - and 6 CPUs
- The product is a 24-hr ozone and PM_{2.5} forecast once per day

Emissions Forecasting

- Our goal is to use most up-to-date emissions inventories
- We projected the NEI-2002 emissions to 2006 using growth and control factors
 - EGAS model
 - NO_x SIP controls
- We use monthly-averaged data for major point sources and wild-land fires
- We forecast mobile emissions
 - Emission factors use the episode (3, 2 ¹/₂ or 1 day) average temperature
- We forecast biogenic emissions using summertime leaf indexes

O₃ in Metro Atlanta: Summer of 2006

Categorical O₃ Performance

Our 4-km Forecast

EPD Ensemble Forecast

Categorical O₃ Performance

Our 4-km Forecast

Our 12-km Forecast

O₃ Bias & Error by Site

Forecasted vs. Observed O₃

O₃ at Gwinnett on July 5, 2006

• Obs. 8-hr: 91 ppb

4-km 8-hr : 89 ppb

PM_{2.5} in Metro Atlanta: Summer of 2006

PM_{2.5} Bias & Error by Site

Georgia Institute of Technology

Forecasted vs. Observed PM_{2.5}

Georgia Institute of Technology

70

-4%

26%

PM_{2.5} at South Dekalb on Sep. 11, 2006

• Obs. 24-hr: 32.6 μ g/m³ 4-km 24-hr: 28.7 μ g/m³

Conclusion

- A "fine-scale" forecasting operation using 3-D models started in Georgia on May 1st, 2006.
- The spatial variability in O_3 and $PM_{2.5}$ in Atlanta shows there is a need for fine-scale models
- 4-km forecast is slightly more accurate than the 12-km forecast
- Some sites are better than others. This is more so for PM2.5
- Ozone forecasts were generally accurate until mid-July.
- Over predictions were dominant afterwards
 - No bias and 20% error to 30 bias and 40% error
 - Diurnal changes are somewhat captured; daily peaks generally underestimated
 - The spatial variability is underestimated.
- PM_{2.5} is harder to predict
 - Generally underestimated May-August
 - 20-40% error (peak)
 - Daily $R^2 < 0.4$
 - Some afternoon peaks are missed
- Ensemble O₃ forecast by Georgia EPD was more successful

Next Steps

- Continue the operation
 - Extend the domain of coverage
 - Increase the resolution
 - Elongate the forecasting period
 - Issue daily updates
 - Improve accuracy
- Link the forecast to health-effects studies:
 - Study the impacts on asthmatic children
 - Build a data archive for long-term exposure studies
- Forecast the effectiveness of short-term local control strategies
 - Predict the impacts of predetermined strategies

Acknowledgement

This research is supported by:

- Georgia Department of Natural Resources
- Air Resources Engineering Center at Georgia Tech